
www.manaraa.com

Paper 169-27

The Web Data Entry System: Methods for Web Development and SAS® Data Management
Paul A Thompson, Sarah Littlewood, Avril J Adelman and J Philip Miller

Division of Biostatistics, Washington University, St. Louis, MO

ABSTRACT
Processing data using the SAS/IntrNet® system requires working
with SAS®, HTML, and JavaScript code simultaneously. The
Web Data Entry System (WDES) is a macro-based system which
develops web page systems and manages the web-oriented data
handling process. The system simplifies and speeds development
by using SAS macros to very quickly process a modified HTML file,
producing a processed HTML file, the SAS dataset, and the code to
process the interaction between the two. The system simplifies and
speeds management of transactions using a comprehensive system
of SAS macros. The WDES uses a metadata strategy, processes the
final HTML file and uses the SAS resolve function to simplify
modification of files. This approach is currently supporting two
multi-site clinical trials in which the Division of Biostatistics,
Washington University, serves as the data center.

INTRODUCTION
The internet offers unprecedented opportunity for remote interaction
with users. In the Division of Biostatistics, Washington University,
we are managing data from remote clinics in several multi-site
clinical trials (including the CRISP project studying polycystic kidney
disease and the EXCITE trial studying stroke rehabilitation
techniques). In these projects, we must provide users at multiple
remote sites with the full data editing experience, including methods
which allow users to add new observations to datasets, edit existing
observations, rarely delete observations, and list values from the
dataset. In return, we must provide feedback and information to the
clinics (i.e., recruitment status, case information, interim results).

In our environment, dynamic (rather than static stored) HTML pages
are generally used, for several reasons. First, maintaining static
pages is difficult when multiple clinics are used, which each require
a separate page. Second, the pages must allow collection of data
(using a form version of the screen) and printing of the data (using a
printable version of the screen). These are accommodated most
directly using dynamic pages. Finally, the system needs to work in
an environment where aspects are changing frequently. Use of a
dedicated HTML editor, such as FrontPage®, is not consistent with
these needs for dynamic page construction. Development and code
management is difficult in an environment in which frequent
modifications are made. The SAS/IntrNet approach works well
in this situation and with these requirements.

To satisfy these basic needs, the Web Data Entry System (WDES)
has been developed. It performs two functions:
1. It is a development system to produce HTML forms, automating

SAS code production and final HTML page preparation
simultaneously.

2. It is a macro-oriented, metadata-based method for web-based
data management.

OTHER METHODS
When setting up methods to work with SAS/IntrNet to gather
data on the web using HTML-based forms in complex and multi-form
projects, several approaches are often tried initially:
1. The PUT statement can be used to write HTML screens in the

DATA step.
2. The HTML pages may be kept in files, and modified using

scan, substr and other character functions.
Using these different approaches, it eventually becomes difficult to
maintain a multiple-form system. Here are some problems

commonly encountered:
1. Frequent HTML form changes are very difficult to manage.
2. PUT statements involve single and double quotes to properly

write statements. These invariably are difficult to maintain,
result in unclosed quotes and are difficult to read.

3. Once the initial author quits, maintaining code is difficult.
These problems call for a radically different approach, which
systematically solves the problems of maintainability, development
and system management of forms. These solutions are provided by
the WDES.

KEY IDEAS FOR THE WDES
The basic ideas for the WDES are as follows (some points are not
unique to WDES):
• Web to SAS to web: An HTML screen or page is used to get

data from a user and send it to SAS, which performs a task and
returns feedback to the user in another HTML screen.

• The SCAD: The gestalt of code (SAS, HTML and
JavaScript) and data used to support the processing of a
single form is called the SCAD (Screen, Controls, And Dataset).
It includes these components:
1) Screen: an HTML-based form presented on the web.
2) Controls: the SAS code which moves data between the

web form and the SAS dataset.
3) Dataset: a SAS dataset (two-level name, variables and

their characteristics).
• Macros for common processes: The very common

standardized data management processes (moving data from
SAS dataset to web form and vice versa, printing data,
checking for observations) are performed using macro
functions. This ensures that code is easily maintained. Macro
functions for data processing enable systematic and common
modifications in all programs by macro changes.

• Metadata for projects and SCADs: Metadata is “data about
data.” A metadata system is used to provide the macro
functions with various types of information. The two type of
metadata, maintained using a web interface, are:
1) Project-wide: A project is a large data collection effort,

generally involving multiple forms and data collection
instruments, directed to fulfilling some joint mission.
Projects involve common directories for SAS datasets,
format libraries and stored compiled macro libraries.
They often involve shared lists of subjects and
participants, and thus need a common location for such
information.

2) SCAD-specific: Within the project, each SCAD has
unique metadata for dataset information, variable
information and form information. The SCAD-level
metadata is similar to the output datasets produced by
PROC CONTENTS, but is more detailed and has several
other types of information.

• Common representation method: A standardized method is
used to name macro variables. This ensures that the system
users are always clear on macro names.

• Modular HTML files: The final modified HTML file is divided
into “pagelets” which are sections of the HTML file that function
in a similar fashion. Thus, the header part, BY variable portion,
main variable section and decision choice portion of the HTML
file are placed in different HTML pagelet files. Thus, multiple
SCADs can use shared components.

SUGI 27 Emerging Technologies

www.manaraa.com

2

• HTML page modification: HTML pages are modified by
including SAS macro references on the pages. The SAS
resolve function is used to substitute the macro value for the
reference, avoiding the use of character functions.

DEVELOPMENT OF WEB PAGES

BASIC IDEAS
The SAS/IntrNet process requires different types of code:
1. HTML code composes the screen form;
2. JavaScript code works with the HTML code; and
3. SAS code handles the data in the SAS environment.
One approach to development in such situations is the “literate
programming” approach (Knuth, 1984). This approach uses a
canonical source document which produces code in several different
languages. Thus, when the canonical source document is modified,
all derived documents are also modified.

In WDES, HTML, JavaScript and SAS code is derived from an
HTML file called the “driver HTML” file, which is a file containing all of
the form components for the SCAD. In the preparation process, it is
read and interpreted by special macro functions to perform all other
functions. It requires further preparation for final use in
SAS/IntrNet. The entire code development process is controlled
from a web-based system called the “Project Control” system. This
approach uses web tools to develop other web tools, in a semi-
automated manner.

SCAD DEVELOPMENT PROCESS

HTML driver file preparation: The driver HTML file is the key tool
in WDES, as it is used to construct all other parts of the SCAD. The
form, prior to web enablement, should be mature and stable. While
the file can be modified after preparation, it is easier to work with
stable forms.

The driver HTML file consists of standard HTML components (i.e.,
form elements such as TEXT fields, RADIO buttons and SELECT
lists). The most important aspect of the driver HTML file is the form
section (the code between the <FORM> and </FORM> tags). The
beginning and ending sections of the form may both be left off the
driver HTML file. Often, a project will have standardized beginning
and ending sections. HTML code in the beginning section will be
needed to ensure that different SCAD forms have a consistent,
project-wide “look-and-feel.” The project will also often have a
consistent ending section, including a SUBMIT button and a tool to
select the next task to perform. The standardized beginning and
ending sections can both be added to the driver HTML file by the
“Project Control” system.

Any of a number of HTML editors may be used to write the driver file.
The user may choose to use the emacs editor or another plain text
editor, which provides very good control of the development process,
but requires understanding HTML at the code level. Detailed
construction of the HTML code:

<INPUT TYPE="TEXT" NAME="Newname">

can be assisted using the HTML major editing mode. When using
this mode, the emacs editor will assist the user by prompting for
various text components.

Microsoft® Word ® (either XP® or 2000®) may also be used.
Word includes a number of tools for the creation of HTML files,
accessed using:

View->Toolbars->Web Tools

The user should save all files in two forms.
• Standard HTML format, with all Microsoft HTML and XML

controls, using “save as Web Page (*.htm;*.HTML).”
Future modifications of the form are done with this version.

• Simplified or filtered form (“save as Web Page,
Filtered (*.htm;*.HTML)') in which many of the
extraneous Microsoft tags are removed. This file should be
then listed as the driver HTML file in the SCAD metadata
dataset.

The “Project Control” system: Development of the SCAD
components in WDES is performed using the “Project Control”
system. This is a web-based interface which performs a number of
functions, including:
• managing the project-wide metadata;
• managing the SCAD -specific metadata;
• initially extracting variables from the driver HTML file;
• adding formats to the format library directly; and
• using the project-wide and SCAD-specific metadata to

construct the final components of the SCAD.

A new project is defined by entering project metadata into the
“Project Control” system, including information about directories (i.e.,
for SAS datasets and JavaScript files), and project LIBNAMEs.
All information about the project is stored in this tool, and thus can
be used during SCAD development.
1. The project is defined by specifying project metadata.
2. SCAD-specific metadata is next added.
3. The driver HTML file is read by the “Project Control” system,

and variables are located in the HTML file. These are stored in
the SCAD-specific metadata set. This information is presented
to the user for further definition and modification.

4. Once the variables are fully described with the “Project Control”
system, the final SCAD is constructed.

Project-wide metadata: Project-wide metadata are defined and
managed at the start of a project, and can be modified later. Most of
the metadata for the project are directory names and locations,
including locations of SAS datasets, JavaScript files, cascading
style sheet files, public file dumps, and other components needed
for a complete project. Additionally, descriptive information is
included in the metadata file (i.e., project title). The “Project Control”
system is then used to create the directories listed in the project-
wide metadata file.

Extraction of variables from the HTML file: The driver HTML file
is processed by a WDES macro, controlled from the “Project Control”
system. During this process, all variables in the HTML file are
identified, and placed into the SCAD -specific metadata dataset.
Variables are identified by finding HTML form components (i.e.,
RADIO, SELECT, CHECKBOX, TEXT, TEXTAREA items). The
NAME field is read for the variable name.

As the variable names are determined, other aspects of the items
are used to make an initial tentative determination of variable
characteristics. For instance, a RADIO button item will be
examined to see if the VALUE choices are numeric or character, and
the TYPE of the variable will be set accordingly. TEXT items which
have large SIZE or MAXLENGTH values will be classified as
character, but those with shorter lengths (under 15) will be classified
as numeric.

``Variable modification'' screen: The variable information is
presented to the user for further evaluation and possible
modification. The “Variable Modification” screen is an HTML web
form, so that designers can use the system on either a remote or
local basis. Variable characteristics (i.e., type, informat and printing
formats, BY status, label) may be entered and modified using this
tool. Once the modifications are completed, SUBMIT initiates the
process of storing the values in the SCAD-specific metadata
dataset. An example of the “Variable Modification” screen is shown
in Figure 1. At this point, all required information for setting up the
HTML screen, processing the information from the screen and

SUGI 27 Emerging Technologies

www.manaraa.com

3

editing the data is known to the WDES.

Using this screen, the designer may also specify the skip pattern for
the HTML screen. As the values are entered into the HTML
screen, JavaScript code (added by the “Project Control” system)
shifts the focus to items, using the specifications entered in the
“Jump to” field. Since focus is very difficult to detect with RADIO
buttons and CHECKBOX items, a small blue arrow is provided (again
automatically by the “Project Control” system) which points at the
current focus item.

The “Variable Modification” screen may be accessed at any time.
New variables may be added to the SAS dataset using this tool. For
this purpose, formulas for computed variables are a part of the SCAD
-specific metadata dataset. Thus, the entire process of SAS dataset
construction may be performed using the Variable Modification”
screen, followed by further preparation using the Project Control
system. More information about this tool is given in Thompson
(2002b).

Figure 1: Variable Modification” screen section

xid

Use?

In DS

BY

Scrn

Prnt

Var
3

Chr

Num
Length Group?

4

Prt Fmt

$. Value
$.

InFmt
$.

JavaScript: Req? Clr? Rstr?

Range?

Label

Formula

SCAD preparation: Using the information in the project-wide and
SCAD-specific metadata datasets, the driver HTML file is processed
again (using the “Project Control” system), in conjunction with the
information entered into the SCAD-specific metadata dataset. The
following functions are performed:
• SAS code is set up to add new observations, recover existing

observations for editing, list values and delete observations
from the main SAS dataset. This macro code may be modified
by the user later to add other functions to the processing of the
SCAD information. A standardized set of macro functions is
used to perform the data processing tasks. The various
choices are made using the “Project Control” system. This is
done by reading a pattern file from the system, and modifying it
according to the information recovered from the metadata files.

• The final version of the HTML web page is set up, which
involves producing a web page version with form elements (for
data entry and modification) and a web page for printing (for
presentation after data entry or modification has been
performed). For instance, this code defines a TEXT item:

<TD><INPUT TYPE=”TEXT” NAME=”_tx”

VALUE=”&_xtx”>-Text of message</TD>

This line contains a TEXT form element. The system would
process that line from the driver HTML file, and produce a
second line:

<TD>&_ftx-Text of message</TD>

The second line would be placed into another pagelet file, used
for printing the results of operations on the SAS dataset. The
changes in the lines produced by the “Project Control” system
preserve the structure of tables and other control information,
and print the information appropriately.

• JavaScript code is added to the HTML code. For this
purpose, a core set of JavaScript functions is needed.
These are provided with WDES. The JavaScript code
enables the browser to:
1) check ranges for numeric values;
2) require that certain widgets have values, including TEXT

boxes, SELECT lists and RADIO buttons;
3) skip items based on the selection of earlier items; and
4) clear and restore values for TEXT boxes.

• Cascading style sheet references are added. Many projects
have a consistent “look-and-feel,” involving a selection of
background color, font for text and other factors. These are
usually defined in a cascading style sheet (.css) file, which is
shared across all SCADs in the project. Locations for the .css
file and JavaScript files are stored with the project-wide
metadata.

• RADIO buttons, CHECKBOX items and SELECT lists are
prepared for editing. This is done by a “pre-slug” process.
Macro references are inserted into the HTML code. These are
a simple function of the variable name and the value of the
button or selection list; if the name is “sex“ with value “1,” the
“pre-slug” term inserted into the pagelet file is &_ysex1.
During the setup for the edit process, the “pre-slug” term
corresponding to the current value is set to CHECKED (for
RADIO buttons and CHECKBOX items) or SELECTED (for
SELECT lists). The value is then inserted into the final HTML
page using the resolve technique.

• The SAS dataset is set up, including labels, formats, lengths
and other required information. Computed variables, which are
a direct function of other variables in the dataset, can be added
as well (i.e., calculating a SAS date).

• The processes for automatic backup of the data are set up.
The backups may be done in several places if necessary.

• The data audit method, using the SAS “audit trail” mechanism,
is set up. The SAS “audit trail” system maintains a separate
indication of all transactions involving the dataset. This system
is useful, but does not survive replacement operations on the
dataset (i.e., operations involving SORT, SET, MERGE, or
UPDATE). Thus, the system also automatically “extracts” the
audit trail and stores this in a permanent, standard SAS
dataset. This version of the audit trail is permanent.

Final preparation: At this point, the file is ready for processing.
The user must provide an HTML “on-ramp” for access to the start-up
version for the form (from which edit, addition, listing, etc.,
operations can be initiated). WDES sets up a test version of this
page automatically. All other functions have at this time been set up
by the “Project Control” system. The designer must now check the
results.

Overall flow of control: The overall flow of control in the “Project
Control” system is shown in Figure 2 below. Arrows represent
processing by the designer in the context of the “Project Control”
system. The designer is responsible for the “driver HTML” file. The
arrows represent processing by the “Project Control” system. The
designer is also responsible for reviewing metadata following initial
processing.

SUGI 27 Emerging Technologies

www.manaraa.com

4

Figure 2: Flow of control in WDES

WEB-BASED DATA MANAGEMENT
WDES is also used to manage web page data processing. The
system is built using a number of macro programs for the
processing of the web information, which perform common functions
simply and consistently. The macro functions are facilitated by the
metadata system.

TASK SELECTION FOR PROCESSING
Information processing for a given form is controlled by a macro for
task selection (which is written by the “Project Control” system for
each SCAD). Variable _procmain is used to select the SCAD for
processing, and Variable _procsub selects the specific task (add,
edit, etc.) from the available choices in the SCAD. Values for
_procsub are pre-set by the “Project Control” system. Other
options may be added. For instance, if a special alternative listing
method is needed, it may be added by selecting an unused values
for _procsub (e.g., 8), and the relevant code added to the selection
macro at an appropriate place. This preset selection macro
approach allows standard methods to be done in a standard way,
while enabling the user to add other options in a very flexible and
simple manner. The value for _procsub is built into the task
selection on the web pages, set up by the “Project Control” system,
schematically shown here:

%macro _select;
preparation code
%if (&_procsub = 0) %then %do;
back to onramp
%end;
%if (&_procsub = 1) %then %do;
add new observation
%end;
%if (&_procsub = 2) %then %do;
get existing values for edit
%end;
%if (&_procsub = 3) %then %do;
get existing values for delete
%end;
%if (&_procsub = 4) %then %do;
list observations
%end;
%if (&_procsub = 6) %then %do;
add edited values back to dataset
%end;
%if (&_procsub = 7) %then %do;
finish delete
%end;
%if (&_procsub = 8) %then %do;
optional additional task
%end;
%if (&_procsub = 5) %then %do;
show page with “Add”, “List”, “Edit” tasks
%end;
ship page from queued pagelets to _webout
%mend _select;

In each of the sections above (in which the value of _procsub is
used to select a choice), an action is performed. This usually
involves moving values in or out of a SAS dataset. Each selection
also involves queuing up a selection of pagelet files. The pagelet file
queue is set up by the “Project Control” system, but may be modified
by the user later.

This selection macro is set up by the “Project Control” system.
Thus, the semi-automated methods involved in the “Project Control”
system are used to pre-set the basic, standard tasks needed for
data management. The system is designed to do basic common
tasks in a standard manner, freeing up the designer to write code for
non-standard, more difficult data management tasks.

MACRO FUNCTIONS
In WDES, common data management processes (adding, editing
listing, and deleting observations from datasets) are performed using
macro functions. These macros are supported by the SCAD
metadata. The system uses approximately 95 macro functions.

The macro functions rely upon one basic assumption: Values are
moved in and out of the SAS dataset one observation at a time. If
the designer wishes to work with multiple observations, this must be
set up using specially-written code. Internally, data management
tasks are performed using the MODIFY statement, which alters a
dataset in place, which preserves audit trails.

Standard approaches for each operation are:
• Addition: Values for a new case are entered into the web page

and returned to SAS. The SAS dataset is checked for unique
values of BY variables, and the observation is added.

• Editing/deletion: BY variables are used to select one case for
editing/deleting. Values are obtained and presented on the
output web page. The user sends back instructions and
modified data (store modified values/delete case).

• Listing: Observations from the entire dataset are listed.

TRANSFER OF VARIABLE VALUES TO AND FROM SAS
In using SAS/IntrNet, the web browser sends back “name-
value” pairs from the web page to the SAS/IntrNet Broker®. The
data are input into SAS as macro variables (the HTML name is the
macro name and the HTML value is the macro value). The WDES
macro functions for data entry use these macro variables to add or
modify observations in the SAS dataset.

A parallel process is used to send values from SAS back to the web
browser. Within the SAS dataset, variable values for the selected
observation are converted into values of macro variables. These are
then written to the output web page using the resolve method
discussed below. To avoid confusion in the processing of values,
one set of macro variables (with one macro variable per SAS dataset
variable) is used to get values from the web back to SAS and a
second set is used to put values from SAS back to the web. In
addition, a third set of variables is used for the formatted values of
the variables. This ensures that no confusion is made between
values input to the SAS dataset and values output from the SAS
dataset. This macro-variable based approach (for both input and
output of dataset values) enables most (if not all) pages to be written
without the use of character functions.

MACRO METADATA VARIABLES
Macro variables communicate metadata information to the WDES
macros. Metadata macro variable names are composed of two parts:
a short name for the SCAD, used as a prefix, and the main portion
for the metadata name, used as a stem or base for the full name.
The entire set of macro metadata variables is produced automatically
using the “Project Control” system.

The macro metadata variables solve an important problem: How can
code be written to enable several different macro variables to be
resolved from a single invocation? The approach taken defines the

Driver
HTML

Review
metadata

Interim
HTML

Final SAS
code

Final
HTML

SUGI 27 Emerging Technologies

www.manaraa.com

5

macro variable with two parts, one which does not vary (the stem or
base) and one which varies at each call (the short name for the
SCAD). Thus, the final resolution, which takes place after the macro
function is called, results in multiple macro variable names after
macro resolution, although only a single macro name is printed in the
macro function.

The dataset name information macro stem is “xmset.” If the short
name for a SCAD was “a,” the full macro for the dataset name for
this SCAD is “_axmset.” During the processing when this macro is
used, the value for _ltr is passed to the macro function through
the macro call. The name can be recovered using the construction
&&_&_ltr.xmset. If:

_ltr=a, _axmlib=MAINLIB, _axmset=SASSET

Thus, a SAS statement such as:

DATA &&_&_ltr.xmlib..&&_&_ltr.xmset;

would be used, and then would resolve to:

DATA MAINLIB.SASSET;

Two periods in the macro reference statement are required.

KEY NOTIONS FOR WDES
The resolve function: When preparing a page for publication,
lines must be formed up and published to either a static or dynamic
page. Thus, some approach must be used to vary the content of
lines published, based on SAS information. In WDES, a simple and
elegant method is used for source modification.

During the page publication process, lines are read from pagelet
files. These lines are set up during SCAD preparation with SAS
macro references (i.e., &_ref) set in places in which varying
information is to be placed. The SAS resolve function is used to
substitute the macro value for the macro reference at the page
publication time. If we are reading the line SLINE from an input
source, and publishing the line OLINE, we would use this code:

DATA _NULL_;
INFILE PAGELTS LRECL=240 PAD; FILE _webout;
LENGTH OLINE SLINE $1000;
INPUT SLINE $CHAR200.;
OLINE=RESOLVE(SLINE); LLONG=LENGTH(OLINE);
PUT OLINE $VARYING1000. LLONG;RUN;

This method forces the resolution of macro reference in variable
SLINE and places the result in variable OLINE. Thus, if variable
SLINE includes macro references, values for those references
would replace the references as the output variable OLINE is set up.
This method can be used to perform the following tasks (and others
as well):
• set up feedback messages following tasks; and
• place existing values into the HTML page for editing.
There are several important advantages to using this method. First,
the HTML code is very easy to work with. This avoids the use of
multiple levels of quotations and other string-manipulation tools. The
code is merely written as HTML code with the added SAS macro
references. Thus, these pages are very easy to read and maintain.
Second, the HTML page can be changed flexibly. The sole
requirement is that the same macro references must be used. The
macro references may be moved around or relocated without great
problems, as the resolve function will place the information
wherever the reference is found.

Here are two examples of this method.
1. If he following lines were stored in a pagelet file:

<H1>&_pagetitle</H1>
<H2>&_operreport</H2>

and if values for these macro variables are:

_pagetitle= Patient Registration
_operreport = Edit operation successful

then passing the lines above through the resolve statement would
result in the following lines being sent to the final output:

<H1>Patient Registration</H1>
<H2>Edit operation successful</H2>

In the actual text of the decision process, we would select the value
for _operreport based on operation results.
2. Lines involving form elements can also have preset macro

references:

<INPUT TYPE=”TEXT” NAME=”_m” VALUE=”&_xm”>

and if _xm=Tylenol, processing with the resolve function
would result in the following text:

<INPUT TYPE=”TEXT” NAME=”_m” VALUE=”Tylenol”>

Pagelet files: When maintaining files of code to be published, other
difficulties still remain.
1. Similar information is to be published for several locations
2. Clinic 1 needs the Clinic 1 patient list, while Clinic 2 should not

see these patients.
3. The Clinic 1 patient list (but not the Clinic 2 list) must be

rewritten when a new patient is added.
4. When editing existing information, BY variables should not be

edited. If this were allowed, it becomes more difficult to
preserve dataset integrity.

One simple solution lies in the use of HTML pages divided into useful
pieces, which can be separately modified or altered. In WDES, these
sections are termed “pagelets”. Each pagelet is a section of an
HTML page which is structurally and conceptually self-contained. A
collection of pagelet files are published sequentially to form the final
page.

This approach to page construction has useful implications:
• Lists of patients can be stored in pagelet files which contain the

clinic number as a part of the name. Thus, the SAS macro
technology can be used to automatically select the proper
file, by including the macro reference in the selection of the
pagelet file.

• Pagelet files, which represent information used in many places,
can be stored in a shared subdirectory. Thus, patient lists are
stored in a subdirectory called shared, which is available to
all other SCADs.

• ID variables are placed into “ID pagelets,” while normal non-ID
variables are placed into “variable” pagelets. Thus, when
editing, the ID pagelets are presented in “printing” mode, while
standard data are presented as INPUT form items.

For instance, many clinic name lists may be maintained as SELECT
lists _list1, _list2, etc. These may be modified whenever a
new case is added to the given clinic. If the pagelet list includes a
specification such as _list&_clin, the correct clinic list is
selected when the value of _clin is set.

``Pre-slugging'' RADIO and SELECT items: When presenting
information for editing, TEXT items are easy to work with, as the
existing value can be placed into the VALUE tag, as was shown
above in the resolve function section. The situation is more
complex with RADIO, SELECT, and CHECKBOX items. Here, the

SUGI 27 Emerging Technologies

www.manaraa.com

6

edit process must begin with current value pre-selected. This is
done using a “pre-slug” technique. For each RADIO, SELECT, or
CHECKBOX item, the form is set up with macro references by the
“Project Control” system. During the publication process, the values
for the special macro variables are set to either CHECKED or empty.
Thus, the item which has CHECKED will be selected on the HTML
form which is sent to the browser.

Consider two RADIO buttons:

<INPUT TYPE=”RADIO” NAME=”_sex” VALUE=”1”
&_ysex1>Male
<INPUT TYPE=”RADIO” NAME=”_sex” VALUE=”2”
&_ysex2>Female

Assume that the value of _sex=1. Prior to the publication process
involving the resolve statement, the following statement would be
processed:

%let _ysex&_sex=CHECKED;

Macro substitution leads to:

%let _ysex1=CHECKED;

The publication process with the resolve statement results in:

<INPUT TYPE=”RADIO” NAME=”_sex” VALUE=”1”
CHECKED>Male
<INPUT TYPE=”RADIO” NAME=”_sex” VALUE=”2”>
Female

which would lead to the presentation with the Male button checked
when the edit screen is presented.

LIMITATIONS OF THE WDES
The WDES has disadvantages. The system is a macro-based
system, which can be somewhat confusing at first. The code for the
selection macro is difficult to read. It involves little standard SAS
code. Thus, there is a learning curve associated with the use of the
system.

The system is oriented toward HTML. Thus, the system is very good
at creating an HTML form which is modeled after the printed form.
The system is not oriented toward the production of forms from SAS
items. Thus, when variables in different datasets are defined, care
must be taken to use the same specifications for the same variables
in different datasets. WDES has a special technique for defining
common variables in a shared file.

CONCLUSION
The WDES is a system for the development and maintenance of web
pages. It is based on metadata storage of information with
processing performed by macro functions. The metadata
information is also maintained in macro variables, to enable the
system to access it very quickly and simply.

Development is driven by a driver HTML file. Initial processing of the
file extracts variables, which are further defined by the user using a
simple interface, in which all components of the variable are modified
simultaneously. Final processing produces a modified HTML file and
all supporting code to enable the file to be immediately used in a data
entry context. The processing also produces the code to support
processing of data for basic tasks.

Normal processing is supported by macro functions, stored in a
compiled macro catalog. A macro for task selection is used that is
written by the system. Since the task selection is done by macro,
customization of the tasks is quite straightforward. The data

processing macros use the macro metadata information.

The WDES is currently the production system for two multicenter
clinical trials. As such, it is not a potential system, but a working
SAS solution. While there is a learning curve associated with the
system, the payoff lies in the production of a data management
system, rather than a collection of disparate unconnected and
separate code tools. The system is further supported by several
manuals (Thompson, 2002a, 2002b).

REFERENCES
Knuth DE (1984} Literate Programming. The Computer Journal,

27, 97-111.
Thompson PA (2002a) Reference Manual, Web Data Entry

System, Version 1.50. St. Louis MO: Division of
Biostatistics, Washington University School of Medicine.

Thompson PA (2002b) User's Guide to the Web Data Entry
System, Version 1.50. St. Louis MO: Division of
Biostatistics, Washington University School of Medicine.

ACKNOWLEDGMENTS
Preparation of this article was supported by EXCITE (Extremity
Constraint-Induced Therapy Evaluation - Grant # IR01 HD37606)
and CRISP (Consortium for Radiologic Imaging Studies of
Polycystic Kidney Disease, Grant # 5U01 DK56961). SAS,
SAS/IntrNet and SAS/IntrNet Broker are registered trademarks of
SAS Institute, Inc in the US and other countries. ® indicates USA
registration. Microsoft Word is the registered trademark of the
Microsoft Corporation. ® indicates USA registration.

CONTACT INFORMATION
Contact the author at:
Name: Paul A. Thompson, Ph.D.

Associate Professor, Division of Biostatistics
Address: Washington University School of Medicine

Campus Box 8067, 660 S. Euclid St.
St. Louis, MO 63110

Telephone: (314) 747-3793
Fax: (314) 362-2693
E-mail paul@wubios.wustl.edu

SUGI 27 Emerging Technologies

	SUGI 27 Title Page

